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ØGranger Causality (GC): 
Time and frequency domain versions

ØEstimation approaches: 
Parametric (P) and Nonparametric (NP)

Validation/demonstration with synthetic data

P and NP comparisons/limitations

Ø Applications to: LFPs, EEG, iEEG and rfMRI

Overview
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v Are there oscillatory features in X and Y separately?                                                             
Power

v Are X and Y related in oscillatory behaviors?                                                          
Coherence

v Is there information flow between X and Y?                                                          
Granger Causality

v In multiple time series, information flow patterns?   
Conditional or Multivariate Granger Causality
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Oscillatory Activities in Time Series and Spectral Measures
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ØOscillatory features in X and Y?    Power

ØInterdependence between X and Y? Coherence

ØInformation flow between X and Y? 
Granger Causality

ØIn multiple time series, network flow patterns? 
Granger Causality (Pairwise & Conditional) 

Signal flow

Brain

X
Y

Time Series, Oscillations and Spectral Measures



Methods Spectral Measures

Parametric
(Vector Autoregressive, 

State Space Modeling)

Power, Coherence, Granger Causality
(Geweke, 1982; 1984; Ding et. al., 2006;

Barnett and Seth, 2014; Solo, 2015)

Nonparametric
(Fourier & 

Wavelet Methods)

Power, Coherence, Granger causality
(Dhamala, et. al., 2008a; 2008b)

Spectral interdependency:

(Geweke, 1982; 1984; 
Dhamala, 2014)Granger causality:   X                  Y
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Estimation of Spectral Measures 



Granger causality: 
a subset of spectral interdependency  measures

Spectral interdependency:

(Geweke, 1982; Hosoya, 1991)



C. W. J. Granger

2003 Nobel Laureate

in Economics

(1934 – 2009)

Who is Granger? 



ØFor two simultaneously measured  
time series, the first series is 
called causal to the second series if 
the second series can be predicted 
better by using the knowledge of the  
first one (Wiener, 1956). 

Wiener (1894-1964)

On Causality and the Brain

In the study of brain waves we may be able to obtain electroencephalograms 
more or less corresponding to electrical activity in different parts of the brain. 
Here the study of the coefficients of causality running both ways and of 
their analogues for sets of more than two functions (two processes) may 
be useful in determining what part of the brain is driving what other part 
of the brain in its normal activity.

Norbert Wiener, The Theory of Prediction, 1956 

Concept of Granger Causality 



Granger Causality MeasuresGranger Causality Measures

ØGiven:

ØLinear Prediction Models:

ØGranger Causality (1969):

If var(ex|y) < var(ex), then
Y is said to exert a causal influence on X. 

Model 1: xn = a1xn-1 + …+amxn-m + …+ex

Model 2: xn = b1xn-1 + …+bkxn-k+…
+c1yn-1+…+ckyn-k+…+ex|y

Clive J. Granger
2003 Nobel Laureate 
Economics 

Granger Causality: Statistical Definition



Granger causality from Y to X:

= log (var(ex)/var(ex|y))

(time-domain Granger causality (GC))

Granger Causality: Representation



ØGeweke (1982) introduced a spectral 
representation of time-domain 
Granger causality:

where is Granger causality spectra. 

ØStatistical meaning: spectral decomposition

total power = intrinsic power  + causal power

I = log (total power/intrinsic power)

John Geweke
Univ of Iowa

Granger Causality: Spectral Version 
(often referred as Granger-Geweke causality (GGC)) 



ØGiven:

ØMultivariate Autoregressive Models:

ØSpectral density matrix:  

Granger Causality: Parametric Estimation



ØSpectral matrix:

ØPower:  diagonal terms

ØCoherence spectra: normalized magnitude
of off-diagonal terms

ØGranger causality: 

(H and    needed) 

Granger Causality: Parametric Estimation (cont’d)



ØFourier and wavelet methods are first used to 

estimate the spectral density (Slm(f) = <Xl(f)Xm(f)*)>): 

Ø We need H and     to calculate Granger causality

Nonparametric Methods



ØSpectral density matrix factorization 
(Wiener and   Masani 1957; Wilson 1972):

where

ØDerivation of H and    :

;                      such that 
ØGranger causality: 

(frequency domain)

(time domain)

(Dhamala, et. al., PRL 2008; NeuroImage, 2008)

Granger Causality: Nonparametric Estimation



Demonstrations with Simulated Time Series



ØModel System:

ØCausality Spectra:

Power and Coherence spectra have peaks at 40 Hz 
(considering fs = 200 Hz).

Y Z

Fourier Transform-Based Granger Causality



X2 X1

Wavelet Transform-Based Granger Causality



Conditional (Multivariate) Granger causality

and its demonstrations with simulated data



Conditional causality: 

(Geweke,1984)Y indirectly influences X

FY®X|Z = FYZ®X – Fz®x
= FYZ*®X*

Conditional Causality: direct or indirect?



Y indirectly influences X
(Dhamala, et. al., NeuroImage, 2008)

Example 1: Conditional Granger causality



(Wen, et. al., Phil. Trans. R. Soc. A, 2013)

Example 2: Conditional Granger causality



Y X

fk = (0.122, 0.391, 0.342)

(Dhamala, et. al., NeuroImage, 2008)

ØUncertainty in model order selection 

ØSharp oscillatory spectral features often not captured

Parametric Approach: difficulty and limitation



ØEffect of data length

short data: lower estimates, but correct directions

Nonparametric Approach: limitation 



Granger Causality in neuroscience

(Friston, Moran, Seth, Current Opinion in Neurobiology, 2013) 

2014: State-space approach 
to Granger causality

(Barnett and Seth, 2014)
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Power and Granger Causality (GC) Spectra (blue: parametric with p = 3, green: nonparametric)
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GC spectra from VAR and SS methods
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VAR estimates dispersion
True
SS, p=3
VAR, p=3

Parametric (VAR) and Nonparametric Methods
Parametric:  VAR and SS

(Dhamala, et al., NeuroImage, 2018; includes codes)

1 2 3

- PNAS article by Stokes and Purdon, 2017
- Commentaries by (i) Barnett et al., (ii) Faes et al., and (iii) reply by Stokes and Purdon, 2017 

Excellent agreement between VAR and SS!

Granger-Geweke causality (GGC) problematic? No!
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(A) Granger Causality spectra

1 (50Hz-Transmitter)  2 (10Hz-Receiver)
1 (50Hz-Transmitter)  2 (30Hz-Receiver)
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(B) Total Interdependence spectra

1 (50Hz-Transmitter) - 2 (10Hz-Receiver)
1 (50Hz-Transmitter) - 2 (30Hz-Receiver)
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(C) Power spectra

Total Power (50Hz-Transmitter)
Intrinsic Power (10Hz-Receiver)
Causal Power (10Hz-Receiver)
Intrinsic Power (30Hz-Receiver)
Causal Power (30Hz-Receiver)
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(D) GC spectra at different coupling and intrinsic noise

1  2, coupling = 0.5
1  2, noise variance = 0.5
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(E)  Effect of intrinsic noise on GC
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(F)  Effect of coupling on GC

Integrated GC

v GGC consistent with other interdependency measures (not problematic at all!)
v GGC definition allows for intrinsic and causal power estimation
v GGC depends on intrinsic noise and coupling strength

1 2

(Dhamala, et al., NeuroImage, 2018; includes codes)



Y X

fk = (0.122, 0.342, 0.391)

(Dhamala, et. al., NeuroImage, 2008)

v The nonparametric approach works better in recovering complex spectral features!
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Parametric and Nonparametric Methods on Sinusoidal Driving



Application to Local Field Potentials (Monkeys) 

(Bressler, et. al. 1993; Brovelli, et. al. 2004; Dhamala, et ., 2008)



Experiments conducted by Dr. Nakamura at 
NIMH (Bressler, et.al. 1993; Brovelli, et. al. 2004)

ØSubject depressed a hand lever

ØReleased for Go-stimuli

Experiment: Sensorimotor Task with Go/No-Go



Ø-100 to 20 ms = Network Analysis Segment

during which hand pressure on the lever 

was maintained 

Network Analysis Segment of LFPs  



(Brovelli, et. al. 2004)

Sensorimotor Beta (14 – 30 Hz) Network 



Fourier-Based Granger Causality 

Wavelet-Based Granger Causality

ØS1àM1 consistent  
with the known role 
of S1 for a sustained  
motor output. 

Nonparametric Granger Causality Spectra



ØNeural Substrate of Motor Control: 

(from Gazzaniga, et. al.(2002))

Sensorimotor Granger Causality Network Graph



ØConsistent with the  
anatomical connections.

Anatomical Connections 
(Felleman and Van Essen, 1991)

S1à7a is not direct, but mediated by 7b



Application to Epicranial EEG
² M. F. Pagnotta, M. Dhamala, G. Plomp, “Benchmarking nonparametric Granger causality: 

Robustness against downsampling and influence of spectral decomposition parameters”, 
NeuroImage 183, 478-494 (2018).

² M. F. Pagnotta, M. Dhamala, G. Plomp, “Assessing the performance of Granger-Geweke
causality: Benchmark dataset and stimulation framework”, Data in Brief 21, 833-851 
(2018).  (Data and Matlab codes included) 

Mattia Pagnota
(Univ of Fribourg)

Gijs Plomp
(Univ of Fribourg)

(Plomp, et. al., 2014a; 2014b)



(Pagnotta, et al., NeuroImage 183, 478-494 (2018))

Stimulation, Electrode Locations, SEPs, Power and GGC 



Application to iEEG of human epilepsy patients
² B. Adhikari, C. Epstein, M. Dhamala, “Localizing epileptic seizures with Granger 

causality”, Physical Review E 88, 030701 (Rapid Communications)  (2013).
² C. Epstein, B. Adhikari, R. Gross, J. Willie, M. Dhamala, “High-frequency Granger 

causality in analysis of intracranial EEG and in surgical decision-making”, Epilepsia 55, 
2038 (2014).   

Bhim Adhikari
(Physics,
Georgia State Univ)

Charles Epstein
(Neurophysiologist,
Emory Univ)

Robert Gross
(Neurosurgeon,
Emory Univ)

Jon Willie
(Neurosurgeon,
Emory Univ)



Where and when does it start?
Can GGC help to localize the onset?   

iEEG data and Seizure Origin  



High-frequency network activity (up to 250 Hz) with GGC can assist in the 
localization of epileptic seizures. 

High-Frequency Network Activity in One Patient



Application to fMRI

² S. Bajaj, B. M. Adhikari, K. J. Friston, M. Dhamala, “Briding the gap: dynamic causal 

modling and Granger causality analysis of resting state functional magnetic resonance 

imaging”. Brain Connectivity (2016). 

² K. Dhakal, M. Norgaard, B. M. Adhikari, K. S. Yun, M. Dhamala, “Higher Node Activity 

with Less Functional Connectivity During Musical Improvisation”.  Brain Connectivity 

(2019).
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GC to task-based fMRI
fMRI activation Analysis

N = 20, p < 0.0005,  k > 20

Directional connectivity
Granger Causality 

Anatomical basis: fiber 
tracts enhanced for expert 

musicians (N=20) compared 
to controls (N = 20)

(Dhakal, et. al., Brain Connectivity (2019); Dhakal, et al., in preparation)

Kiran Dhakal



ØGranger causality techniques are useful to test 
hypotheses about information flow or to explore 
information flow from time series data.

ØThere are two estimation approaches: 
parametric (modeling based) and nonparametric 
(Fourier- and wavelet-transforms based), which 
can be complementary to each other. 

ØGranger causality methods are applicable to a 
variety of neuroscience data: LFP, iEEG, fMRI, 
fNIR, EEG, MEG. 

Summary
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